Purpose: In this problem set, you will improve your understanding of logarithmic functions by studying their algebraic properties.

- 1. Let's get warmed up with some computations. Your notes from Friday will come in handy.
 - (a) Evaluate $\log_5(125)$

(b) Evaluate
$$\log_3\left(\frac{1}{27}\right)$$

(c) Evaluate $\log_7(1)$

(d) Evaluate
$$\log_8\left(\frac{1}{4}\right)$$
. (Hint: put 8 and $\frac{1}{4}$ in base 2.)

Here's a summary of logarithmic functions for your reference:

• General Logarithm Function:

$$y = \log_b(x)$$
, for $b > 0$.

• Common Logarithm Function:

$$y = \log_{10}(x) = \log(x).$$

• Natural Logarithm Function:

$$y = \log_e(x) = \ln(x).$$

Now, we need to build a list of the algebraic properties of logarithms.

- 2. Let b > 0.
 - (a) $b^0 = 1$, so $\log_b(_) = _$.
 - (b) $b^1 = b$, so $\log_b(_) = _$.
 - (c) $b^x b^y = b^{x+y} \operatorname{so} \log_b (b^x b^y) =$ _____. Reformulated:
 - (d) $\frac{b^x}{b^y} = b^{x-y}$ so $\log_b\left(\frac{b^x}{b^y}\right) =$ _____. Reformulated: ______.
 - (e) $(b^x)^p = b^{px} \operatorname{so} \log_b ((b^x)^p) = _$. Reformulated: _____
 - (f) We can also change the base of our logarithm! Add the final answer to the next question here: ______

- 3. What if we want to change the base of our logarithm from b > 0 to c > 0?
 - (a) Let's start with $\log_b(x)$. Our goal is to get this equal to something with only logs of base c. To that end, how can we write x as a power of b? (You'll have a log in the exponent)

(b) Use your answer to part (a) and property (e) of logs above to simplify $\log_c(x)$.

(c) Solve for $\log_b(x)$.

4. Find the domain of $\log_5(5^{x+1})$, then simplify the expression.

5. Find the domain of $5^{\log_5(x+1)}$, then simplify the expression.

6. Find the domain of $\log_{1/2}(2^{9x})$, then simplify the expression.

7. Find the domain of $\log\left(\frac{x^3}{2\sqrt{y}}\right)$, then simplify the expression.

8. Simplify the expression $\log_2(10).$

9. Simplify the expression $\log_6(45) + \log_6(28) - \log_6(35)$.

10. Simplify the expression $\ln(e^{-5})$.

11. Simplify the expression $\ln\left(\ln\left(e^{e^9}\right)\right)$.

12. Solve the equation $10^{2x+1} = 7$.

13. Solve the equation $\ln(x+1) + \ln(x+2) = \ln(6^x)$.